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[1] Several recent publications have indicated that cloud
droplets belonging to a particular size range may tend to
cluster by forming small random particle groups imbedded
in an otherwise uniform cloud. To analyze radiative transfer
in clouds with such small-scale inhomogeneities, we invoke
the concepts of statistical electromagnetics. We show that as
long as the assumptions of ergodicity and spatial uniformity
hold, one can still apply the classical radiative transfer
equation in which the participating extinction and phase
matrices are obtained by averaging the respective single-
particle matrices over all the particles constituting the cloud.
This result implies that comparisons of in situ and
remote-sensing retrievals of the cloud-particle size
distribution can be problematic and should be performed
with caution. Citation: Mishchenko, M. I. (2006), Radiative

transfer in clouds with small-scale inhomogeneities:

Microphysical approach, Geophys. Res. Lett., 33, L14820,

doi:10.1029/2006GL026312.

1. Introduction

[2] The microphysical approach to radiative transfer in
particulate media was pioneered by Borovoi [1966] and has
ultimately led to a self-consistent derivation of the general
radiative transfer equation (RTE) directly from the Maxwell
equations [Mishchenko, 2002, 2003]. This derivation has
demonstrated that the RTE rests explicitly on the assump-
tion that the scattering medium is statistically homogeneous.
However, it has been suggested in recent publications [e.g.,
Knyazikhin et al., 2002, 2005; Shaw et al., 2002; Marshak
et al., 2005] that cloud droplets belonging to a particular
size range may tend to form small groups of spatially
correlated particles (clusters) imbedded in an otherwise
homogeneous cloud.
[3] The problem of multiple scattering in stochastic par-

ticulate media has been studied so far using the concepts of
the phenomenological radiative transfer theory [e.g., Cairns
et al., 2000; Kostinski, 2001; Petty, 2002; Barker et al., 2003;
Davis, 2006, and references therein]. However, this approach
often implies the introduction of heuristic quantities with
poorly defined physical meaning and numerous a priori
assumptions not linked directly to a fundamental physical
theory such as classical or quantum electrodynamics [see
Mishchenko, 2006]. Hence the objective of this Letter is to
address the problem of radiative transfer in particulate media
with small-scale inhomogeneities by using the self-consistent

microphysical approach explicitly based on the concepts of
statistical electromagnetics.

2. Model, Assumptions, and Approximations

[4] We will use the following simplified model of an
inhomogeneous cloud (Figure 1). The total volume of the
cloud is V. The interior of the cloud is filled with Nbp � 0
uniformly distributed ‘‘background’’ particles and Ni � 1
uniformly distributed, small, compact inhomogeneities.
Each inhomogeneity occupies a (nearly spherical) volume
Vi such that

Vi � V and NiVi < V ð1Þ

and is filled with a small number Nip of ‘‘inclusion’’
particles such that

N ¼ Nbp þ NiNip � Nip; ð2Þ

where N is the total number of particles in the cloud. The
average single-scattering and absorption properties of the
background and inclusion particles are, in general, different.
The background particles can, in principle, be absent (i.e.,
Nbp can be zero).
[5] The cloud is illuminated by a plane electromagnetic

wave. The case of illumination by quasi-monochromatic
(e.g., solar) light will be discussed later. Our primary
objective is to predict the response of a (polarization-
sensitive) detector of electromagnetic energy located at an
observation point, either internal (observation point 1 in
Figure 1) or external. The location of the external observa-
tion point is arbitrary and can, for example, be below
(observation point 2) or above (observation point 3) the
cloud.
[6] In the framework of the microphysical approach to

radiative transfer [Mishchenko, 2002, 2003], we will make
the following fundamental assumptions.
[7] 1. Each cloud particle, either background or inclusion,

is located in the far-field zones of all the other particles.
[8] 2. The observation point is also located in the far-field

zones of all the particles forming the cloud.
[9] 3. All scattering paths going through a particle two or

more times are neglected (the Twersky approximation).
Doing this is justified since N � 1.
[10] 4. The cloud is an ergodic scattering system so that

averaging over time can be replaced by averaging over
particle positions and states.
[11] 5. The position and state of each background particle

are statistically independent of each other and of those of all
the other background particles. The spatial distribution of
the background particles throughout the cloud is random
and statistically uniform.
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[12] 6. The position of each inclusion within the cloud
interior is random and statistically uniform and independent
of those of all the other inclusions.
[13] 7. The spatial distribution and states of the inclusion

particles within each inclusion are independent of the
position of this inclusion.
[14] 8. The position and state of each inclusion particle

are statistically independent of each other. The state of
each inclusion particle is independent of the positions and
states of all the other inclusion particles belonging to the
same inclusion. The spatial distribution of the inclusion
particles throughout each inclusion is random and statis-
tically uniform.
[15] 9. All diagrams with crossing connectors in the

diagrammatic expansion of the coherency dyadic can be
neglected (the ladder approximation).
[16] Note that the state of a particle collectively repre-

sents its microphysical characteristics such as size, refrac-
tive index, shape, orientation, etc.

3. Derivation of the Radiative Transfer Equation

[17] Assumptions 1–3 from the preceding section allow
us to write the instantaneous electric field at the observation
point in the form of the far-field order-of-scattering Twersky
expansion:
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where the notation follows that in Section 3C of
Mishchenko [2002]. In particular, Einc is the incident field,
the indices i, j, etc. number the particles, and the scattering
dyadics B

$
describe the transformation of the electric field

upon single scattering by a particle. The second term on the
right-hand side of equation (3) describes the cumulative
contribution of all scattering paths going through one
particle, the third term represents the contribution of all
double-scattering paths, etc. In accordance with the Twersky
approximation, no scattering path is allowed to go through a
particle more than once.
[18] To compute an actual optical observable, one must

substitute the expansion (3) in the corresponding formula
defining the observable and take an average over all
realizable particle positions and states. The difference of
the situation analyzed in this paper from that studied by
Mishchenko [2002, 2003] is that now the positions of the
inclusion particles belonging to the same inclusion are
partly correlated. Indeed, although the position of an inclu-
sion particle within an inclusion can be arbitrary, the
distance from the center of the inclusion to the particle
can never exceed the inclusion radius. This implies that the
distance between any two inclusion particles can never
exceed the inclusion diameter.

[19] It follows from the Twersky expansion that this
partial correlation affects only the scattering paths of the
second and higher orders and only those going through an
inclusion more than once. Indeed, statistical averaging of
the second term on the right-hand side of equation (3)
requires only the knowledge of the probability to find
particle i inside an elementary volume dV centered at a
point r within the cloud without regard to where the rest of
the particles are located. For a background particle, the
corresponding probability density function is simply 1/V.
For an inclusion particle, the corresponding probability is
equal to the probability that the point r is inside the
inclusion volume times the probability that the inclusion
particle is located inside the elementary volume dV centered
at the point r, that is, (Vi/V)(1/Vi)dV, where we have taken
into account the first inequality of equation (1). The result-
ing probability density function is again 1/V.
[20] The direct evaluation of the effect of the partial

spatial correlation of particles belonging to the same inclu-
sion on the contributions of the multiple-scattering paths is
an extremely difficult analytical problem. It can be shown,
however, that this effect can be neglected in the case of
small inhomogeneities owing to the inequality (2). Indeed,
let us consider the contributions of the second-order scat-
tering paths described by the third term on the right-hand
side of equation (3). The total number of such paths is
equal to N(N � 1), whereas the number of such paths that
go through the same inhomogeneity twice and are, thus,
affected by the spatial correlation is only Ni 
 Nip(Nip � 1)
� N(N � 1). Thus the contribution of the latter paths to the
left-hand side of equation (3) can be neglected in compar-
ison with the cumulative second-order contribution.
[21] This result can be reformulated by stating that the

cumulative second-order-scattering interaction of a member
of a cluster with its own cluster is much weaker than with
the rest of the cloud. Indeed, a member of a cluster is
involved in Nip � 1 second-order scattering paths going
through the other members of the same cluster and in N �
Nip second-order scattering paths going through all the other
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Figure 1. Cloud morphology.
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particles forming the cloud. Admittedly, the scattering
dyadic B

$

ij0 includes a factor 1/Rij, where Rij is the distance
between particles i and j. The average value of this factor
will be substantially smaller for two members of the same
cluster then for a member of a cluster and any other particle
forming the cloud. However, the inequality N � Nip makes
this circumstance insignificant, especially if one takes into
account how large the total number of particles in a liquid-
water cloud can be at the typical droplet number concen-
tration �108 particles/m3.
[22] Indeed, let us consider, for example, a cluster con-

sisting of Nip = 103 components and occupying a spherical
volume with radius Ri = 10�2 m. The average inverse
distance between a cluster component located in the center
of the spherical volume and any other member of the cluster
is proportional to 1/Ri = 102 m�1. Let us now consider a
spherical cloud volume with radius 10 m centered at the
cluster. The average inverse distance between the central
cluster component and any other particle belonging to the
10-m-radius cloud volume is proportional to 10�1 m�1.
However, the number of such cloud particles is �4 
 1011.
Obviously, the product 103 
 102 = 105 is much smaller
than the product 10�1 
 4 
 1011 = 4 
 1010 and becomes
even less significant if one takes into consideration the
entire cloud rather than only its 10-m-radius part.
[23] The reader can verify that the same is true of all

higher-order scattering paths: the contribution of all the
paths of an order �2 that go through the same inhomoge-
neity more than once can be neglected in comparison with
the cumulative contribution of all the scattering paths of this
order. This is a very important result which simplifies
drastically all derivations. Indeed, since the former contri-
bution is negligibly small anyway, one can evaluate it
approximately by assuming that there are no spatial corre-
lations at all. Then the entire derivation becomes exactly the
same as in Mishchenko [2002, 2003] and yields exactly the
same result.
[24] We can, thus, conclude that the transfer of radiation

in clouds with small-scale inhomogeneities is adequately
described by the classical radiative transfer equation. Fur-
thermore, the corresponding extinction and phase matrices
are obtained by the standard averaging of the respective
single-particle matrices over all N particles constituting the
cloud assuming that the background and the inclusion
particles form a uniform particle mixture. This is the main
result of this Letter. It is straightforward to show [cf.
Mishchenko et al., 2006, Section 8.15] that it remains valid
in the case of illumination by quasi-monochromatic light, in
particular, sunlight.
[25] One important implication of this result is that the

classical exponential extinction law remains applicable to
weakly inhomogeneous particulate media. The same con-
clusion was drawn previously by Borovoi [2002] on the
basis of heuristic phenomenological considerations.

4. Discussion

[26] The applicability of the classical RTE to clouds with
small-scale inhomogeneities is a quite welcome result since
it permits the direct use of a number of well-known
analytical and numerical solution techniques [e.g., Lenoble,
1985; Hovenier et al., 2004]. Although it rests on several

fundamental assumptions listed in Section 2, most of
them appear to be quite plausible. However, the assump-
tions of ergodicity and spatial uniformity deserve a separate
analysis.
[27] The meaning of the assumptions or ergodicity

[Mishchenko, 2006] and spatial uniformity is illustrated in
Figure 2. The detector of electromagnetic energy has an
angular aperture small enough to resolve the angular vari-
ability of the radiation field (e.g., �1�) and a finite accep-
tance area DS. Both define the part of the cloud volume
bounded schematically by the dotted straight lines in
Figure 2; this volume will be called the acceptance volume.
According to the integral form of the RTE, all energy
recorded by the detector comes directly from the particles
contained in the acceptance volume [cf. Mishchenko, 2002,
equation (125)]. The energy exciting each particle can be
either the (attenuated) sunlight or the light scattered by the
other particles. The light scattered by a particle from the
acceptance volume toward the detector can be attenuated by
other particles located closer to the detector.
[28] Let us assume that the detector accumulates the

signal over a time interval Dt and subdivide the acceptance
volume into a number of sampling volumes such that their
optical thickness Dt along the line of sight of the detector is
very small (�0.01). One of these sampling volumes is
shown schematically in Figure 2. Obviously, the contribu-
tion of a particle to the detector signal is essentially
independent of the specific particle position in the sampling
volume. Therefore, the strict meaning of the assumptions of
ergodicity and statistical uniformity of particle and inclusion
positions within the cloud is that each particle visits each
sampling volume during the measurement interval Dt.
[29] In reality, the cloud contains many particles of the

same type. Therefore, the practical meaning of the assump-
tions of ergodicity and spatial uniformity is that particles of
each type visit each sampling volume during the measure-
ment interval Dt a number of times statistically representa-
tive of the total number of such particles in the entire cloud.
[30] It is quite reasonable to expect that the assumptions

of ergodicity and spatial uniformity hold in passive satellite
observations, in which case the large instantaneous geomet-
rical field of view of a typical instrument (hundreds of
meters or more) ensures a large size of each sampling
volume. The same is true of the atmospheric radiation

Figure 2. The practical meaning of the assumptions of
ergodicity and spatial uniformity.
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budget computations, in which case the role of a detector of
electromagnetic energy is played by large Earth surface
areas. However, in situ measurements are often taken with
relatively small instruments over short accumulation times.
Therefore, one has to exercise care in comparing size
distribution results obtained with remote-sensing and in situ
detectors of scattered electromagnetic energy. The passive
remote-sensing retrievals are likely to be representative of
the size distribution averaged over the entire cloud, whereas
the in situ measurements may depend strongly on the
instrument characteristics such as Dt and DS and sometimes
may be difficult to interpret in terms of a multiple-scattering
theory. To ensure the validity of the assumptions of ergo-
dicty and spatial uniformity in such cases one may need to
increase Dt and/or DS quite significantly, which may or may
not be practical.
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